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I. THE PROBLEM OF EXPERIMENTAL DESIGN IN SIMULATION

A computer simulation, which is a mathematical model of a system in

the form of a computer program, may be viewed as a "black box" in which

input factors (independent variables) are combined to produce an output

or response (dependent variable). The simulation usually is used to con-

duct an experimental study of the modelled system. Since simulation runs

often are very expensive, the simulation user may wish to concentrate on

only the most important factors, that is, those having a strong effect on

the output. However, because standard experimental designs found in the

statistical literature often require more simulation runs than are avail-

able to the simulation user, the identification of these factors by means

of statistically designed experiments can pose special design and analysis

problems.

In general, therefore, the primary difficulty of experimental design

in simulation can be succinctly summarized as too many factors and too few

runs. Because of this, it is impossible to investigate thoroughly all

factors under consideration. What is required, then, is some means of

making the available number of computer runs and the number of factors

compatible. Assuming that time and/or budget limitations prohibit addi-

tional computer runs, there is a need for conciliatory alternatives that

can be feasibly implemented.

A general discussiou of this experimental design problem is r esented

in this report. Three possible two-stage strategies for attacking the

problem are considered, and performance measures with which to judge the
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strategies are described. Each strategy consists of a first stage which

uses a nonstandard Ppproach to identify a relatively small factor subset

for further consideration, The second stage examines this subset by means

of a standard experimental design in an attempt to eliminate any unimportant

factors which were unknowingly included in the subset. Because these

strategies are designed for "screening" the factors, they are known as

factor screening approaches.

A. DISCUSSION

In some cases expert judgment, based on simulation of similar systems

or on consideration of the processes being simulated, can be used to select

the subset of factors for follow-up experimentation. For example, because

of previous experience, the user of a given simulation may be quite certain

that specific factors will have little or no effect on the response when

compared with the rest of the factors. In this situation, then, these factors

could be eliminated from the investigation by keeping them fixed at constant

values throughout subsequent experimentation. The remaining factors would

comprise the subset to be analyzed in the second stage.

On the other hand, instead of selecting factors according to expectations

without expending any computer runs, it may prove of value to invest a portion

of the available computer runs in a preliminary first-stage screening experi-

ment. Of necessity, such a preliminary experiment woulA, as i rule, involve

considerably less computer runs than factors, thus giving rise to confounded

estimates, that is, estimates which are "mixed together" and impossible to

separate by statistical analysis. Confounded estimatts provide ambiguous

results which may, if interpreted incorrectly, lead to completely

--2-
b



erroneous conclusions about which factors are important.

Because unconfounded estimates of the effects of K factors cannot be

obtained without a minimum of K + 1 computer runs, the confounding problem

may present severe drawbacks to the usefulness of any preliminary screening

experiment. Nonetheless, they may prove of enough value to be used instead

of (or,' possibly, in conjunction with) expert judgment.

B. A FACTOR SCREENING MODEL

In screening, a small number of factor levels is generally employed;

usually two are sufficient. Suppose, then, that a simulation consists of

K factors, each of which is at two levels, arbitrarily designated "high"

and "low."

The actual functional or statistical relationship between the simu-

lation response and the factors of a simulation model will, of course, vary

from model to model. However, in devising factor screening strategies for

use in computer simulation experiments, it is desirable to define a common

statistical model to serve as a basis in which to compare and to assess any

screening strategies that might be proposed. To that end, the following

paragraphs summarize a reasonable and generally adequate screening model

that will be assumed to underlie the simulation responses.

Define
I-h

+1, if factor j is at its "high" level for the ith

computer run

-1, if factor j is at its "low" level for the

computer run
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and let y1 denote the simulation response for the it computer run. The

factor screening model assumes that

K
Y, +Z 8x +CsB0 + £

where is the (linear) effect of factor j and the error terms, ci, are

independent and normally distributed random variables having a zero mean

2and variance ao. In essence, this model may be regarded as a first-order

Taylor series approximation to the actual relationship between the yi's

and the xijts.

In terms of the model, factor j will be termed active if and only if

t 0, and inactive if and only if - 0. Furthermore, under the adopted

parameterization, can be interureted as the average difference between

the true simulation responses of the high and of the low levels of the j

factor. Hence 8 > 0 only if the factor level producing the larger true

response is labeled as the high (+1) level. It is assumed that only a

relatively small number, k, of the K factors are active.

Under this nomenclature, the basic aim of any screening procedure is

to efficiently and effectively classify, as active or as inactive, the K

factors under investigation.

-4-
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11. THREE FACTOR SCREENING .PPROAHCES

This paper considers three possible factor screening approaches. Each

approach is a two-stage strategy which combines a nonstandard first stage

procedure with a second stage that employs a standard experimental design

known as a Plackett-Burman design. [See Plackett and Burman (1946).] This

design is a two-level orthogonal design for studying up to 4m-1 factors in

4m runs. Because of the orthogonality, there is no confounding (i.e., mixing

together) of factor effects in the second stage.

A. EXPERT JUDGMENT1 *1
The first approach assumes that the analyst (i.e., the simulation user)

feels he or she can do a good job of deciding which factors are active and

which are inactive. Thus, the analyst will, asing axpert judgment, select

those factors to be carried over into the second stage. Assume, for sake

of analysis simplicity, that

(1) P(Analyst identifies a factor as activelthe factor is active) r

and (2) P(Analyst identifies a factor as inactivelthe factor is inactive) * r 2.

Of cuurse, if r 1 f r 2 W 1.0, the analyst's judgment is perfect. However,

as the probabilities r 1 and r 2 decrease from 1.0, the effectiveness of this

method also decreases. Although the second stage Plackett-Burman design

applied to factors selected in the first stage helps guard against the mis-

classification of inactive factors, any active factor not selected by the

analyst in the Zirst stage will never be classified correctly.

-5-



B. GROUP SCREENING

Group screening has been discussed in a number of papers (e.g., Watson

(1961), Li (1962), Mauro and Smith (1980)). In group screening, "group-

factors" are created by partitioning the individual factors into a number

of groups. The two-stage group screening procedure considered here relies

on a Plackett-Burman design to test for significant group-factor effects in

the initial stage. However, this design is used in a nonstandard manner

since all factors in a given group appear at the same level during a simula-

tion run.

For example, suppose that the m factors xl,...,xm form one group-

factor. Then, whenever this particular group-factor appears at its high

(+1) level in the Plackett-Burmsn design, all component factors x1,x2 1 ...,. jXj
would be at their high levels. Thus, the effects of xl,x2,...,2% are com-

pletely confounded so that if the group factor is found to have an effect,

it cannot be determined which of the factors x1 ,x 2 ,...,xor how many e-

have an effect. The second stage Plackett-Burman follow-up, therefore,

helps to resolve this question by examining all individual factors compris-

ing the group factors judged significant in the first stage.

The first stage experiment requires N runs, where N is the smallest

integer which is a multiple of four and also greater than the number of

group factors. Furthermore, unlike the expert judgment approach, group

screening examines all of the original K factors experimentally; none are

excluded from experimentation in the first stbge. However, the possibility

of cancellation of effects within a group factor exists. That is, individual

factors could possibly have offsetting positive and negative effects. In

-6-j



such a case, these factors would not be brought over into the second stage

and would therefore be misclasmified as inactive.Because of this possibility, the definition of high and low factor

levels should be made so that all factor effects are anticipated to hael*

the sume direction, e.&., to all be positive. If all the effects have

the same direction, cancellation is impossible. Mauro and Smith (1980)

have examined, in the case a - 0, the performance of group screening when

some effect directions are incorrectly essumed.

C. RANDOM BALANCE

In the random balance approach, all K origiiLal factors are included

in a first stage experiment of N runs. Because of the constraints on the

number of runs, W<K. Subject to this restriction, the value of N can be

whatever the analyst chooses, except that it should be an even number.

In the initial experiment, each factor appears at its high level N/2

times and at its low level N/2 times during the N runs, with the order of

high and low levels selected at random. Although this guarantees that the

factor effects are unconfounded with the overall mean effect, they are

confounded with each other. Furthermore, the confounding is random. In

addition, no standard analysis techniques for random balance data exist,

although a number have been suggested.

However, proponents of random balance (e.g., Satterthwaite (1959) and

Budne (1959)] have emphasised that, in general, the degree of confounding

is relatively small and analysis poses no great problem. Nonetheless,
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random balance has received a very bad name in the statistical community,

mainly because of the random confounding of factor effects. Although the

objections are based on good statistical reasoning, no empirical evidence

is available to support either proponents or opponents of random balance.

Hauro and Smith (1981) are currently investigating the performance of ran-

dom balance when a standard one-factor analysis of variance F-test is used

as the method of analysis. The second stage Plackett-Burman design includes

all factors judged significant in the random balance experiment.
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111, PERFORMAN4CE MEASURES

In attempting to identify the important factors for detailed investi-

gation, there are the two conflicting requirements of factor misclassifica-

tion and expenditure of runs. Before difterent factor screening approaches

may be compared, these requirements must be quantified. In assessing per-

formance, Smith and Mauro (1980) considered the values of expected loss

and expected relative testing cost.

In order to measure the severity of classification error, consider the

class of loss functions given by

K K
L - £w 6 /IwI 1• J I i

where f
i0 ,f the 1th factor is correctly identified

0, if the t= factor is incorrectly identified,

and w denotes the loss incurred (wj i. 0) if the jth factor is misclassified.an j

Note that L is a function of •I'....BK and lies in the interval [0,1].

For the particular case in which

F L, if factor j is active

Il 0, if factor j is inactive,

it is reasonable to let

I1/2k, if factor j is active

l/2(K-k), if factor j is inactive,



since this apportions one-half of the overall maximum loss to the active

factors and the other half to the inactive factors. Hence, in this case

the loss L reduces to

L - [(K-k)(k-A) + k(K-k-I)]/2k(K-k)

where A denotes the number of active factors correctly identified and I

denotes the number of inactive factors correctly identified.

The second performance measure discussed by Smith and Mauro (1980)

takes into account the total number of runs, R, that a factor screening

approach requires. The testing cost may be defined relative to the number

of runs required for a Plackett-Burman design applied to all K original

factors. Thus, the relative testing cost Q is given by

Q =(R)/*(K*)

where O(M) represents the expense of conducting M runs, and K* denotes the

number of runs required by a Plackett-Burman design for K factors. If $(M)

is assumed proportional to M, then

- R/K*.

It should be noted that in most screening strategies both L and Q are

random variables. Thus, in assessing the performance of a factor screening

approach, it is reasonable to examine their expected values.

Both expected loss and expected relative testing cost must be jointly

considered in evaluating the overall performance of a factor screening strategy.

In some sense the problem is akin to the testing of a statistical hypothesis

ia which the probabilities of Type I error (rejecting a true null hypothesis)

and Type II error (accepting a false null hypothesis) are both desired small,
j

but are inversely related.

-10-
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The simulation user may wish to specify joint values of expected loss

and expected relative testing cost that are acceptable. For example, the

user may place an upper limit on expected loss and then, subject to this

constraint, select the screening approach having the minimum relative test-

ing cost.

Only if one screening strategy has both a smaller expected loss, E(L),

and expected relative testing cost, E(Q), than another strategy can the

first be said to be definitely better than the second. Otherwise, the

decision depends upon the analyst's trade-offs. For example, by looking at

Figure 1, it is clear that all analysts would select strategy A over either

strategy B or D. However, one analyst might prefer A over E because of the

smaller E(Q) while another might prefer E over A because of the smaller E(L).
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IV. SOME PRELIMINARY RESULTS

Ongoing research by Desmatics, Inc. is examining the performance

measures E(L) and E(Q) for the situation where all active factors are

such that II - A, *Q4) is proportional to M, and the incurred loss wi

is as defined in the previous section. Within this framework, the fol-

lowing cases are being considered:

K - 60, 120, 240

k = p*K (p* - 2/60, 3/60, 5/60, 8/60)

a - rA (r-0, r>0)

Research to date has considered only the determInistic caAe (i.e., r-0).

Future research will address the case where random error is present.

Figure 2 exhibits results for the specific case K - 120, k - 10, and

o - 0. In the deterministic situation, E(A), the expected number of active

factor- identified, is equal to k[1-2E(L)] for the thtee approaches con-

sidered in this report. Thus, both E(L) and E(A) are presented in the figure.

As will be noted, there are a number of points corresponding to each

of the three strategies. For the expert judgment strategy, performance de-

pends on the values of the probabilities r1 and r The figure gives results

for various values of r1 - r 2 . For group screening, performance depends on g,

group size, and on i, the number of misspecified factor effect directions.

The figure provides results for g - 3, 5, and 8 and i - 0, 1, 2, 3, 4, 5. For

random balance, performance depends on c, where c - N/K and on Q, the signifi-

cance level for the F-test used in analyzing the first-stage data. The results

in Figure 2 correspond to various values of c and a in the ranges .2 < c < .8

and .10 < < .50.
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